
STANDARDISATION & GUIDELINES

jmzML, an open-source Java API for mzML, the PSI

standard for MS data

Richard G. Côté1�, Florian Reisinger1� and Lennart Martens2,3

1 EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
2 Department of Medical Protein Research, VIB, Ghent, Belgium
3 Department of Biochemistry, Ghent University, Ghent, Belgium

Received: October 26, 2009

Revised: December 7, 2009

Accepted: January 2, 2010

We here present jmzML, a Java API for the Proteomics Standards Initiative mzML data

standard. Based on the Java Architecture for XML Binding and XPath-based XML indexer

random-access XML parser, jmzML can handle arbitrarily large files in minimal memory,

allowing easy and efficient processing of mzML files using the Java programming language.

jmzML also automatically resolves internal XML references on-the-fly. The library (which

includes a viewer) can be downloaded from http://jmzml.googlecode.com.

Keywords:

Bioinformatics / Java API / Proteomics Standards Initiative MS standard / XML

processing

Proteomic experiments can generate an exorbitant volume of

data. Without the availability of efficient processing and

analysis tools, these data will, for all their potential, remain

largely unused. In an effort to promote data comparison,

exchange and verification, the Human Proteome Organiza-

tion Proteomics Standards Initiative (PSI) recently officially

released the mzML standard for MS data representation [1].

This format merges (and obsoletes) the previous two promi-

nent MS formats mzData [2] and mzXML [3], and adds novel

data capture functionality as well. Although several mzML

APIs already exist in the C or C11 programming languages

(e.g. openMS [4] and ProteoWizard [5]; for a full list see http://

www.psidev.info/index.php?q 5 node/257), no full API has

yet been made available in pure Java.

We here present jmzML, a mature Java API for mzML

files that combines a small memory footprint with a fully

functional object model including automatic XML reference

resolving without sacrificing the overall speed of data access.

Written in 100% pure Java, the jmzML API is also inher-

ently platform independent, and contains a simple yet

powerful viewer application.

One of the key features of the mzML specification is

the abundance of internal references in the XML document,

e.g. from a spectrum to the instrument configuration used

to acquire that spectrum. mzML allows for the definition

of repeated elements such as the abovementioned instru-

ment configuration in a single location, relying on internal

references to point out to these elements where required.

Additionally, spectra can also refer to each other, as is the

case for precursor MS and product MS/MS spectra.

This reliance on references limits repetition in the file,

thus reducing file size. The corollary, however, is that

when reading an mzML file, it is necessary to continuously

look up such referenced elements, a task that is typically

handled by reading an entire mzML file into memory

for fast access to the referenced elements. However, as

mzML files can easily exceed several gigabytes in size, the

large amount of memory required to read these files fully

into memory quickly makes it impossible to process these

files on a standard PC or laptop. To circumvent

this problem, while still allowing referenced elements to

be retrieved on-the-fly, jmzML uses the innovative XPath-

based XML indexer (xxindex) component to access the

mzML file. xxindex is essentially a random-access XML

Abbreviations: CV, controlled vocabularies; PSI, Proteomics

Standards Initiative; xxindex, XPath-based XML indexer �These authors contributed equally to this work.

Correspondence: Professor Lennart Martens, Department of

Medical Protein Research, VIB and Department of Biochemistry,

Ghent University, B-9000 Ghent, Belgium

E-mail: lennart.martens@UGent.be

Fax: 132-9-264-94-84

& 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com

1332 Proteomics 2010, 10, 1332–1335DOI 10.1002/pmic.200900719



file reader that first indexes a file, and subsequently allows

the user to retrieve any XML element based on its XPath.

The overall effect for jmzML is that xxindex allows it to treat

the whole mzML file as a swap file, obviating the need to

load the file into memory. When a jmzML user attempts to

retrieve an XML element from the file as one or more Java

objects in memory, any internal references will be detected

by jmzML and the corresponding XML fragments will be

read into memory automatically through xxindex. After

unmarshalling the relevant XML fragments into Java

objects, jmzML seamlessly provides a complete object model

to the user, implicitly replacing internal XML references by

the actual objects (Fig. 1). This process can cascade to any

depth (i.e. elements that contain references that themselves

contain referenced elements). As only the relevant portions

of the whole XML file are read into memory during this

process, the memory footprint remains trivial compared

with the size of the original file. By using the live indexing-

based random-access capabilities of xxindex, jmzML can

handle large files at good performance without the need to

parse more than a small section of the file into memory at

any one time.

Referenced objects will implicitly be shared across

several referent objects. jmzML will recognize this central

role of the referenced objects, and will improve the effi-

ciency of the unmarshalling process by caching certain of

these referenced objects in memory for prompt retrieval.

This caching mechanism is user-configurable and can be

tweaked to achieve any desired memory-to-performance

balance.

Another specific property of the mzML format is its

reliance on controlled vocabularies (CV), through

‘‘cvParam’’ elements in the format. jmzML provides

full access to these CV parameters, and actively inter-

prets several, low-level parameters (for instance, to

correctly decode binary spectrum or chromatogram infor-

mation). However, detailed handling of high-level CV

parameters (such as sample origin) is left to the user, as

this handling will likely differ from application to applica-

tion. An example of such an end-user application is given

by the mzML semantic validator [6], which is built on

jmzML.

The jmzML library also comes with a simple but

powerful, interactive mzML viewer that can be used to load

and view spectra and chromatograms from multiple, very

large mzML files simultaneously, illustrating the usefulness

of the low-memory footprint achieved by jmzML. Screen-

shots of this graphical tool are shown in Fig. 2.

Figure 1. Schematic representation of the automatic reference resolving in jmzML. The left-hand diagram shows a part of the XML schema

structure for mzML, which often uses internal references to point to the shared elements, as highlighted in the figure. The Unified

Modeling Language (UML) diagram on the right displays the actual Java objects available to a jmzML user. Note that elements that are

merely referenced in the XML are directly available as full Java objects in jmzML (arrows), and that this automatic, memory-efficient

reference resolving occurs at any depth (lower part of UML diagram on right).

Proteomics 2010, 10, 1332–1335 1333

& 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



jmzML has already been successfully used as the basis

for a PSI-MS mzML semantic validator [6] and will be a

cornerstone of the next incarnation of the PRIDE data-

base [7]. jmzML is freely available, and is released as

open source under the permissive Apache 2.0 license.

The binaries, source code and documentation can be

downloaded from the project web site at http://jmzml.

googlecode.com.

Figure 2. Screenshots of the jmzML spectrum viewer that are included in the library. The top screenshots shows several simultaneously

opened mzML files, one per tab. The tree on the left provides the list of spectrum and chromatogram identifiers found within each file, and

selecting an identifier shows the corresponding MS spectrum or chromatogram on the right. Both the spectrum and chromatogram

viewer are interactive, allowing click-and-drag zooming. (A) The spectrum viewer. (B) The chromatogram viewer.

1334 R. G. Côté et al. Proteomics 2010, 10, 1332–1335

& 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



This work has been supported by the "ProDaC" grant LSHG-
CT-2006-036814 of the European Union. The authors thank
Henning Hermjakob and Rolf Apweiler for their support. L. M.
thanks Joël Vandekerckhove for his support.

The authors have declared no conflict of interest.

References

[1] Deutsch, E., mzML: A single, unifying data format for mass

spectrometer output. Proteomics 2008, 8, 2776–2777.

[2] Orchard, S., Hermjakob, H., Julian, R. K., Runte, K. et al.,

Common interchange standards for proteomics data: public

availability of tools and schema. Proteomics 2004, 4,

490–491.

[3] Pedrioli, P. G. A., Eng, J. K., Hubley, R., Vogelzang, M. et al.,

A common open representation of mass spectrometry data

and its application to proteomics research. Nat. Biotechnol.

2004, 22, 1459–1466.

[4] Sturm, M., Bertsch, A., Gröpl, C., Hildebrandt, A. et al.,

OpenMS – an open-source software framework for mass

spectrometry. BMC Bioinformatics 2008, 9, 163.

[5] Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P.,

ProteoWizard: open source software for rapid proteomics

tools development. Bioinformatics 2008, 24, 2534–2536.

[6] Montecchi-Palazzi, L., Kerrien, S., Reisinger, F., Aranda, B. et al.,

The PSI semantic validator: a framework to check MIAPE

compliance of proteomics data. Proteomics 2009, 9, 5112–5119.

[7] Martens, L., Hermjakob, H., Jones, P., Adamski, M. et al.,

PRIDE: the proteomics identifications database. Proteomics

2005, 5, 3537–3545.

& 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com

Proteomics 2010, 10, 1332–1335 1335


